RAPME 2014 VCU Research with Nanomagnets and Nanowires

Harini Mody Myah Massenburg Arindam Gupta

Top-Down Approach

- Fabrication
- CAD designs Computer-aided designs
- PMMA on the silicon wafer
- Electron beam lithography electrons are bombarded on the silicon wafer to create the designs. Electrons pierce through the PMMA layer.

Electron-Beam Deposition

- 5nm of titanium and 10nm of cobalt.
- The material is heated in a high vacuum area.
- Then the electron beam is focused with magnet and curved with a deflecting magnet.
- The electron beam are vaporized in the water-cooled hearth, and then it is deposited on the substrate.
- Lift off in acetone and then sonication

Microscopic Images - Optical Microscope

- Magnets
- Markers
- Dust Particles
- Dark Field Image
- Electron-beam lithography
- Electron-beam deposition

Microscopic Images - SEM

- Scanning Electron
 Microscope
- width 204 nmHeight 374 nm

Microscopic Images - AFM

- Atomic Force Microscope
- Used to find 3D images.

Bottom-Up Approach

- Describes how molecules interact with each other forming a type of disorder
- Steps taken:
 - electropolishing
 - anodization
 - etching / characterization
 - metal deposition
 - EDAX, VSM, SEM

Electropolishing

Making the surface smooth

Anodization

- Consists of two types of deposition AC and DC
- Four different samples used

EDAX

Graph

Characterization

Characterization consists of SEM imaging (normal imaging, etching rate, pores, multistep, top view, and clouds) and also VSM imaging (the existence of magnetic movement).

Characterization: SEM Imaging

sample 1

SU70 5.0kV x35.0k SE(M,LA70)

sample 4

SU70 5.0kV x110k SE(M,LA70)

500nm

Characterization: SEM Imaging

sample 2

Characterization: VSM Imaging

Hysteresis Loop with 4 different tests

zero to 10K to -10K to 10K

test for 30K (three times as fast)

Characterization: VSM Imaging

samples cont:

0 to 3K to -3K to 3K

test w/o sample

Nanowires and the Physics Behind It

Main Purpose and Objective: To position the nanowires in specific regions and test the mechanical properties.

The Process:

1. Develop a wafter through the fabrication process and use Electron Beam Lithography (EBL) as an addition in the process.

- 2. Conduct dielectrophoresis (control the position of nanowires with the use of a function generator) as part of a nanowire solution. In result, you should get nanowires that bridge the electrodes.
- 3. Conduct SEM or Scanning Electron Microscopy to locate points of where the nanowires are present.

- 4. Once the locations of the nanowires are found, conduct AFM or Atomic Force Microscopy.
- 5. Finally, conduct different steps of Lithiation to find and test the strength of nanowires also known as Young's Modulus.

Note: There are different nanowire experiments with different parameters as well.

Depends primarily on the experimenter and what materials he/she decides to use.

SEM Image of Nanowires

AFM Image

Manipulator Robot we used to get measurements of our sample chip in the SEM.

Reflection- Arindam Gupta

- Got hands on experience with things I never thought I would be able to do.
- Learned a lot of new things and how to apply my Chemistry skills when working on these experiments.
- Made great connections with all 3 Phd students: Mamun, Iftekhar, and Naveen.

Reflection- Harini Mody

- Increased my knowledge of chemical and physical properties of magnets.
- Got practical experience with nanoscale.
- Had a blast working with all the members.

Reflection- Myah Massenburg